Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions

Identifieur interne : 000102 ( PascalFrancis/Corpus ); précédent : 000101; suivant : 000103

Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions

Auteurs : Ho-Chun Huang ; JINTAI LIN ; ZHINING TAO ; Hyun Choi ; Kenneth Patten ; Kenneth Kunkel ; MIN XU ; JINHONG ZHU ; Xin-Zhong Liang ; Allen Williams ; Michael Caughey ; Donald J. Wuebbles ; JULIAN WANG

Source :

RBID : Pascal:08-0526809

Descripteurs français

English descriptors

Abstract

[1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 03 mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 113
A06       @2 D19
A08 01  1  ENG  @1 Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions
A11 01  1    @1 HUANG (Ho-Chun)
A11 02  1    @1 JINTAI LIN
A11 03  1    @1 ZHINING TAO
A11 04  1    @1 CHOI (Hyun)
A11 05  1    @1 PATTEN (Kenneth)
A11 06  1    @1 KUNKEL (Kenneth)
A11 07  1    @1 MIN XU
A11 08  1    @1 JINHONG ZHU
A11 09  1    @1 LIANG (Xin-Zhong)
A11 10  1    @1 WILLIAMS (Allen)
A11 11  1    @1 CAUGHEY (Michael)
A11 12  1    @1 WUEBBLES (Donald J.)
A11 13  1    @1 JULIAN WANG
A14 01      @1 Illinois State Water Survey @2 Champaign, Illinois @3 USA @Z 1 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut. @Z 10 aut. @Z 11 aut.
A14 02      @1 Now at Science Applications International Corporation @2 Camp Springs, Maryland @3 USA @Z 1 aut.
A14 03      @1 Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign @2 Urbana, Illinois @3 USA @Z 2 aut. @Z 5 aut. @Z 12 aut.
A14 04      @1 Now at School of Engineering and Applied Sciences, Harvard University @2 Cambridge, Massachusetts @3 USA @Z 2 aut.
A14 05      @1 Air Resource Laboratory, National Oceanic and Atmospheric Administration @2 Silver Spring, Maryland @3 USA @Z 13 aut.
A20       @2 D19307.1-D19307.15
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000184323370310
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 08-0526809
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 03 mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  3  FRE  @0 Transport grande distance @5 01
C03 01  3  ENG  @0 Long-range transport @5 01
C03 02  2  FRE  @0 Monde @5 02
C03 02  2  ENG  @0 global @5 02
C03 02  2  SPA  @0 Mundo @5 02
C03 03  2  FRE  @0 Polluant @5 03
C03 03  2  ENG  @0 pollutants @5 03
C03 03  2  SPA  @0 Contaminante @5 03
C03 04  2  FRE  @0 Phénomène précurseur @5 04
C03 04  2  ENG  @0 precursors @5 04
C03 04  2  SPA  @0 Fenómeno precursor @5 04
C03 05  X  FRE  @0 Précurseur @5 05
C03 05  X  ENG  @0 Precursor @5 05
C03 05  X  SPA  @0 Precursor @5 05
C03 06  2  FRE  @0 Gaz @5 06
C03 06  2  ENG  @0 gases @5 06
C03 06  2  SPA  @0 Gas @5 06
C03 07  X  FRE  @0 Qualité air @5 07
C03 07  X  ENG  @0 Air quality @5 07
C03 07  X  SPA  @0 Calidad aire @5 07
C03 08  X  FRE  @0 Condition climatique @5 08
C03 08  X  ENG  @0 Climatic condition @5 08
C03 08  X  SPA  @0 Condición climática @5 08
C03 09  2  FRE  @0 Condition aux limites @5 09
C03 09  2  ENG  @0 boundary conditions @5 09
C03 09  2  SPA  @0 Condiciones límites @5 09
C03 10  X  FRE  @0 Echelon régional @5 10
C03 10  X  ENG  @0 Regional scope @5 10
C03 10  X  SPA  @0 Escala regional @5 10
C03 11  X  FRE  @0 Modélisation @5 11
C03 11  X  ENG  @0 Modeling @5 11
C03 11  X  SPA  @0 Modelización @5 11
C03 12  2  FRE  @0 Modèle @5 12
C03 12  2  ENG  @0 models @5 12
C03 12  2  SPA  @0 Modelo @5 12
C03 13  X  FRE  @0 Forçage @5 13
C03 13  X  ENG  @0 Forcing @5 13
C03 13  X  SPA  @0 Forzamiento @5 13
C03 14  2  FRE  @0 Ozone @5 14
C03 14  2  ENG  @0 ozone @5 14
C03 14  2  SPA  @0 Ozono @5 14
C03 15  2  FRE  @0 Traceur chimique @5 15
C03 15  2  ENG  @0 chemical tracers @5 15
C03 16  2  FRE  @0 Simulation @5 16
C03 16  2  ENG  @0 simulation @5 16
C03 16  2  SPA  @0 Simulación @5 16
C03 17  2  FRE  @0 Projet @5 17
C03 17  2  ENG  @0 projects @5 17
C03 17  2  SPA  @0 Proyecto @5 17
C03 18  2  FRE  @0 Climat @5 18
C03 18  2  ENG  @0 climate @5 18
C03 18  2  SPA  @0 Clima @5 18
C03 19  2  FRE  @0 Analyse sensibilité @5 19
C03 19  2  ENG  @0 sensitivity analysis @5 19
C03 20  X  FRE  @0 Rapport mélange @5 20
C03 20  X  ENG  @0 Mixing ratio @5 20
C03 20  X  SPA  @0 Relación mezcla @5 20
C03 21  2  FRE  @0 Moyenne journalière @5 21
C03 21  2  ENG  @0 daily average @5 21
C03 22  2  FRE  @0 Echantillon référence @5 22
C03 22  2  ENG  @0 standard samples @5 22
C03 22  2  SPA  @0 Roca patrón @5 22
C03 23  2  FRE  @0 Etats Unis @2 NG @5 61
C03 23  2  ENG  @0 United States @2 NG @5 61
C03 23  2  SPA  @0 Estados Unidos @2 NG @5 61
C03 24  2  FRE  @0 Etats Unis Centre Ouest @2 NG @5 63
C03 24  2  ENG  @0 Midwest @2 NG @5 63
C03 24  2  SPA  @0 Estados Unidos Centro Oeste @2 NG @5 63
C03 25  2  FRE  @0 Texas @2 NG @5 64
C03 25  2  ENG  @0 Texas @2 NG @5 64
C03 25  2  SPA  @0 Texas @2 NG @5 64
C03 26  2  FRE  @0 Californie @2 NG @5 65
C03 26  2  ENG  @0 California @2 NG @5 65
C03 26  2  SPA  @0 California @2 NG @5 65
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
N21       @1 343
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 08-0526809 INIST
ET : Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions
AU : HUANG (Ho-Chun); JINTAI LIN; ZHINING TAO; CHOI (Hyun); PATTEN (Kenneth); KUNKEL (Kenneth); MIN XU; JINHONG ZHU; LIANG (Xin-Zhong); WILLIAMS (Allen); CAUGHEY (Michael); WUEBBLES (Donald J.); JULIAN WANG
AF : Illinois State Water Survey/Champaign, Illinois/Etats-Unis (1 aut., 3 aut., 4 aut., 6 aut., 7 aut., 8 aut., 9 aut., 10 aut., 11 aut.); Now at Science Applications International Corporation/Camp Springs, Maryland/Etats-Unis (1 aut.); Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign/Urbana, Illinois/Etats-Unis (2 aut., 5 aut., 12 aut.); Now at School of Engineering and Applied Sciences, Harvard University/Cambridge, Massachusetts/Etats-Unis (2 aut.); Air Resource Laboratory, National Oceanic and Atmospheric Administration/Silver Spring, Maryland/Etats-Unis (13 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D19; D19307.1-D19307.15; Bibl. 3/4 p.
LA : Anglais
EA : [1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 03 mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.
CC : 001E; 001E01; 220
FD : Transport grande distance; Monde; Polluant; Phénomène précurseur; Précurseur; Gaz; Qualité air; Condition climatique; Condition aux limites; Echelon régional; Modélisation; Modèle; Forçage; Ozone; Traceur chimique; Simulation; Projet; Climat; Analyse sensibilité; Rapport mélange; Moyenne journalière; Echantillon référence; Etats Unis; Etats Unis Centre Ouest; Texas; Californie
FG : Amérique du Nord
ED : Long-range transport; global; pollutants; precursors; Precursor; gases; Air quality; Climatic condition; boundary conditions; Regional scope; Modeling; models; Forcing; ozone; chemical tracers; simulation; projects; climate; sensitivity analysis; Mixing ratio; daily average; standard samples; United States; Midwest; Texas; California
EG : North America
SD : Mundo; Contaminante; Fenómeno precursor; Precursor; Gas; Calidad aire; Condición climática; Condiciones límites; Escala regional; Modelización; Modelo; Forzamiento; Ozono; Simulación; Proyecto; Clima; Relación mezcla; Roca patrón; Estados Unidos; Estados Unidos Centro Oeste; Texas; California
LO : INIST-3144.354000184323370310
ID : 08-0526809

Links to Exploration step

Pascal:08-0526809

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions</title>
<author>
<name sortKey="Huang, Ho Chun" sort="Huang, Ho Chun" uniqKey="Huang H" first="Ho-Chun" last="Huang">Ho-Chun Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at Science Applications International Corporation</s1>
<s2>Camp Springs, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jintai Lin" sort="Jintai Lin" uniqKey="Jintai Lin" last="Jintai Lin">JINTAI LIN</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Now at School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhining Tao" sort="Zhining Tao" uniqKey="Zhining Tao" last="Zhining Tao">ZHINING TAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Choi, Hyun" sort="Choi, Hyun" uniqKey="Choi H" first="Hyun" last="Choi">Hyun Choi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patten, Kenneth" sort="Patten, Kenneth" uniqKey="Patten K" first="Kenneth" last="Patten">Kenneth Patten</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kunkel, Kenneth" sort="Kunkel, Kenneth" uniqKey="Kunkel K" first="Kenneth" last="Kunkel">Kenneth Kunkel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Min Xu" sort="Min Xu" uniqKey="Min Xu" last="Min Xu">MIN XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jinhong Zhu" sort="Jinhong Zhu" uniqKey="Jinhong Zhu" last="Jinhong Zhu">JINHONG ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xin Zhong" sort="Liang, Xin Zhong" uniqKey="Liang X" first="Xin-Zhong" last="Liang">Xin-Zhong Liang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Williams, Allen" sort="Williams, Allen" uniqKey="Williams A" first="Allen" last="Williams">Allen Williams</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Caughey, Michael" sort="Caughey, Michael" uniqKey="Caughey M" first="Michael" last="Caughey">Michael Caughey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, Donald J" sort="Wuebbles, Donald J" uniqKey="Wuebbles D" first="Donald J." last="Wuebbles">Donald J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Julian Wang" sort="Julian Wang" uniqKey="Julian Wang" last="Julian Wang">JULIAN WANG</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Air Resource Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Silver Spring, Maryland</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0526809</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0526809 INIST</idno>
<idno type="RBID">Pascal:08-0526809</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions</title>
<author>
<name sortKey="Huang, Ho Chun" sort="Huang, Ho Chun" uniqKey="Huang H" first="Ho-Chun" last="Huang">Ho-Chun Huang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Now at Science Applications International Corporation</s1>
<s2>Camp Springs, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jintai Lin" sort="Jintai Lin" uniqKey="Jintai Lin" last="Jintai Lin">JINTAI LIN</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Now at School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhining Tao" sort="Zhining Tao" uniqKey="Zhining Tao" last="Zhining Tao">ZHINING TAO</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Choi, Hyun" sort="Choi, Hyun" uniqKey="Choi H" first="Hyun" last="Choi">Hyun Choi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Patten, Kenneth" sort="Patten, Kenneth" uniqKey="Patten K" first="Kenneth" last="Patten">Kenneth Patten</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kunkel, Kenneth" sort="Kunkel, Kenneth" uniqKey="Kunkel K" first="Kenneth" last="Kunkel">Kenneth Kunkel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Min Xu" sort="Min Xu" uniqKey="Min Xu" last="Min Xu">MIN XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jinhong Zhu" sort="Jinhong Zhu" uniqKey="Jinhong Zhu" last="Jinhong Zhu">JINHONG ZHU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liang, Xin Zhong" sort="Liang, Xin Zhong" uniqKey="Liang X" first="Xin-Zhong" last="Liang">Xin-Zhong Liang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Williams, Allen" sort="Williams, Allen" uniqKey="Williams A" first="Allen" last="Williams">Allen Williams</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Caughey, Michael" sort="Caughey, Michael" uniqKey="Caughey M" first="Michael" last="Caughey">Michael Caughey</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wuebbles, Donald J" sort="Wuebbles, Donald J" uniqKey="Wuebbles D" first="Donald J." last="Wuebbles">Donald J. Wuebbles</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Julian Wang" sort="Julian Wang" uniqKey="Julian Wang" last="Julian Wang">JULIAN WANG</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Air Resource Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Silver Spring, Maryland</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air quality</term>
<term>California</term>
<term>Climatic condition</term>
<term>Forcing</term>
<term>Long-range transport</term>
<term>Midwest</term>
<term>Mixing ratio</term>
<term>Modeling</term>
<term>Precursor</term>
<term>Regional scope</term>
<term>Texas</term>
<term>United States</term>
<term>boundary conditions</term>
<term>chemical tracers</term>
<term>climate</term>
<term>daily average</term>
<term>gases</term>
<term>global</term>
<term>models</term>
<term>ozone</term>
<term>pollutants</term>
<term>precursors</term>
<term>projects</term>
<term>sensitivity analysis</term>
<term>simulation</term>
<term>standard samples</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transport grande distance</term>
<term>Monde</term>
<term>Polluant</term>
<term>Phénomène précurseur</term>
<term>Précurseur</term>
<term>Gaz</term>
<term>Qualité air</term>
<term>Condition climatique</term>
<term>Condition aux limites</term>
<term>Echelon régional</term>
<term>Modélisation</term>
<term>Modèle</term>
<term>Forçage</term>
<term>Ozone</term>
<term>Traceur chimique</term>
<term>Simulation</term>
<term>Projet</term>
<term>Climat</term>
<term>Analyse sensibilité</term>
<term>Rapport mélange</term>
<term>Moyenne journalière</term>
<term>Echantillon référence</term>
<term>Etats Unis</term>
<term>Etats Unis Centre Ouest</term>
<term>Texas</term>
<term>Californie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 0
<sub>3</sub>
mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>113</s2>
</fA05>
<fA06>
<s2>D19</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUANG (Ho-Chun)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JINTAI LIN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHINING TAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHOI (Hyun)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PATTEN (Kenneth)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>KUNKEL (Kenneth)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MIN XU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>JINHONG ZHU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LIANG (Xin-Zhong)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>WILLIAMS (Allen)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>CAUGHEY (Michael)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>WUEBBLES (Donald J.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>JULIAN WANG</s1>
</fA11>
<fA14 i1="01">
<s1>Illinois State Water Survey</s1>
<s2>Champaign, Illinois</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Now at Science Applications International Corporation</s1>
<s2>Camp Springs, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, Illinois</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Now at School of Engineering and Applied Sciences, Harvard University</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Air Resource Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Silver Spring, Maryland</s2>
<s3>USA</s3>
<sZ>13 aut.</sZ>
</fA14>
<fA20>
<s2>D19307.1-D19307.15</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000184323370310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0526809</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 0
<sub>3</sub>
mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transport grande distance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Long-range transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Monde</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>global</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Polluant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>pollutants</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Contaminante</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Phénomène précurseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>precursors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Fenómeno precursor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Gaz</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>gases</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Gas</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Qualité air</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Air quality</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Calidad aire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Condition climatique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Climatic condition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Condición climática</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Condition aux limites</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>boundary conditions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Condiciones límites</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Echelon régional</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Regional scope</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Escala regional</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>models</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>ozone</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Traceur chimique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>chemical tracers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>simulation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Projet</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>projects</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Proyecto</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Climat</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>climate</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Clima</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Rapport mélange</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Mixing ratio</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Relación mezcla</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Moyenne journalière</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>daily average</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Echantillon référence</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>standard samples</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Roca patrón</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Etats Unis Centre Ouest</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>Midwest</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Estados Unidos Centro Oeste</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Texas</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>Texas</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Texas</s0>
<s2>NG</s2>
<s5>64</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Californie</s0>
<s2>NG</s2>
<s5>65</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>California</s0>
<s2>NG</s2>
<s5>65</s5>
</fC03>
<fC03 i1="26" i2="2" l="SPA">
<s0>California</s0>
<s2>NG</s2>
<s5>65</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 08-0526809 INIST</NO>
<ET>Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions</ET>
<AU>HUANG (Ho-Chun); JINTAI LIN; ZHINING TAO; CHOI (Hyun); PATTEN (Kenneth); KUNKEL (Kenneth); MIN XU; JINHONG ZHU; LIANG (Xin-Zhong); WILLIAMS (Allen); CAUGHEY (Michael); WUEBBLES (Donald J.); JULIAN WANG</AU>
<AF>Illinois State Water Survey/Champaign, Illinois/Etats-Unis (1 aut., 3 aut., 4 aut., 6 aut., 7 aut., 8 aut., 9 aut., 10 aut., 11 aut.); Now at Science Applications International Corporation/Camp Springs, Maryland/Etats-Unis (1 aut.); Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign/Urbana, Illinois/Etats-Unis (2 aut., 5 aut., 12 aut.); Now at School of Engineering and Applied Sciences, Harvard University/Cambridge, Massachusetts/Etats-Unis (2 aut.); Air Resource Laboratory, National Oceanic and Atmospheric Administration/Silver Spring, Maryland/Etats-Unis (13 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2008; Vol. 113; No. D19; D19307.1-D19307.15; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] The U.S. air quality is impacted by emissions both within and outside the United States. The latter impact is manifested as long-range transport (LRT) of pollutants across the U.S. borders, which can be simulated by lateral boundary conditions (LBC) into a regional modeling system. This system consists of a regional air quality model (RAQM) that integrates local-regional source emissions and chemical processes with remote forcing from the LBC predicted by a nesting global chemical transport model (model for ozone and related chemical tracers (MOZART)). The present-day simulations revealed important LRT effects, varying among the five major regions with ozone problems, i.e., northeast United States, midwest United States, Texas, California, and southeast United States. To determine the responses of the LRT impacts to projected global climate and emissions changes, the MOZART and RAQM simulations were repeated for future periods (2048-2052 and 2095-2099) under two emissions scenarios (IPCC AlFi and Bl). The future U.S. air quality projected by the MOZART is less sensitive to the emissions scenarios than that simulated by the RAQM with or without incorporating the LRT effects via the LBC from the MOZART. The result of RAQM with the LRT effects showed that the southeast United States has the largest sensitivity of surface ozone mixing ratio to the emissions changes in the 2095-2099 climate (-24% to +25%) followed by the northeast and midwest United States. The net increase due to the LRT effects in 2095-2099 ranges from +4% to +13% in daily mean surface ozone mixing ratio and +4% to +11% in mean daily maximum 8-h average ozone mixing ratios. Correspondingly, the LRT effects in 2095-2099 cause total column 0
<sub>3</sub>
mixing ratio increases, ranging from +7% to +16%, and also 2 to 3 more days with the surface ozone exceeding the national standard. The results indicate that future U.S. air quality changes will be substantially affected by global emissions.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Transport grande distance; Monde; Polluant; Phénomène précurseur; Précurseur; Gaz; Qualité air; Condition climatique; Condition aux limites; Echelon régional; Modélisation; Modèle; Forçage; Ozone; Traceur chimique; Simulation; Projet; Climat; Analyse sensibilité; Rapport mélange; Moyenne journalière; Echantillon référence; Etats Unis; Etats Unis Centre Ouest; Texas; Californie</FD>
<FG>Amérique du Nord</FG>
<ED>Long-range transport; global; pollutants; precursors; Precursor; gases; Air quality; Climatic condition; boundary conditions; Regional scope; Modeling; models; Forcing; ozone; chemical tracers; simulation; projects; climate; sensitivity analysis; Mixing ratio; daily average; standard samples; United States; Midwest; Texas; California</ED>
<EG>North America</EG>
<SD>Mundo; Contaminante; Fenómeno precursor; Precursor; Gas; Calidad aire; Condición climática; Condiciones límites; Escala regional; Modelización; Modelo; Forzamiento; Ozono; Simulación; Proyecto; Clima; Relación mezcla; Roca patrón; Estados Unidos; Estados Unidos Centro Oeste; Texas; California</SD>
<LO>INIST-3144.354000184323370310</LO>
<ID>08-0526809</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0526809
   |texte=   Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023